
Monocular Occlusion Based Video Segmentation
Radford Parker Ahmad Humayun

Fig. 1. Shows the segmentation results on the TennisBalls sequence. (a) sample frame from input video. (b) occlusion posterior per pixel calculated
using our random forest classifier. (c) shows oversegmentation result by just using RGB information. (d) shows oversegmentation augmented by depth
information from Kinect. (e) shows oversegmentation by using RGB and occlusions computed in (b). Note that oversegmentation using occlusion (e)
successfully reduces the number of false positives, in a fashion similar to the oversegmentation with depth (d).

I. INTRODUCTION

Dense video segmentation is considered a useful first step
for many vision applications. It creates spacetime superpixels
which help avoid processing millions of individual voxels.
Traditionally, video segmentation methods work by simply
observing low-level pixel cues when combining voxels to
make space-time regions. This is typically done through
appearance and optical flow cues. One thing amiss from these
cues is the notion of depth in a scene. Depth can play a
critical role in delineating object boundaries, especially where
motion and appearance cues fail.

There are two ways to include depth information in a video
segmentation pipeline: (1) with the inclusion of an RGBD
sensor or (2) by inferring ordinal depths through occlusion
boundaries [3], [7]. Even though the former solution simpli-
fies the problem, it is less elegant since it does not allow
processing of monocular RGB videos. In this paper we will
improve the state-of-the-art video segmentation algorithm by
detecting occlusion regions to infer depth boundaries. We will
evaluate results by comparing the oversegmentations when
using (1) no depth, (2) an RGBD sensor, and (3) occlusions
to infer object boundaries.

II. RELATED WORK

Most methods for video segmentation are based on pho-
tometric consistency [8]. Apart from using color, Grund-
mann et al. [2] uses optical flow explicity to provide a
hierarchy of spacetime superpixels using Felzenszwalb and
Huttenlocher [1] oversegmentation. Their algorithm trades
the use of high-level cues like occlusions for computational
efficiency. On the other hand, some techniques demonstrate
the importance of occlusions in creating space-time super-
pixels [6].

A variety of methods exist for computing occlusions in
frame pairs, including those based on graph-cuts [5] Recently,
Humayun et al. [4] introduced a learning framework to infer
occlusions on a per pixel basis. In this paper we use latter,
in combination with [2], to improve video segmentation in
monocular video.

III. APPROACH

Our algorithm has 3 steps: (1) compute forward and
backward flow for a consecutive pair of frames from the input
video; (2) compute occlusion for all pixels in the first frame;
(3) use flow and occlusions to make space-time superpixels.
Figure 2 gives an overview of our approach.

A. Occlusion Posterior

When a foreground object in a scene moves, some portion
of the background gets occluded. This information is relevant
for segmentation because two regions sharing an occlusion
boundary need not be merged because they belong to dif-
ferent objects. Humayun et al. [4] uses features based on
appearance, texture, and flow to train a random forest for
finding pixels that are occluded. Since the label here is binary
({occluded, not occluded}), the forest performs regression to
produce a probability of occlusion Oi for pixel i.

Part of our research is to decide which features used by [4]
can be discarded in lieu of efficiency without sacrificing a
significant amount of precision. We experimented varying
combination of features proposed in [4], by taking hints from
the feature importance returned by the forest. Although [4]
shows improvements in classifying occlusion with the use of
multiple flow algorithms, we constrain ourselves to a single
flow algorithm [9] in order to reduce computation time.

One set of features our occlusion classifier uses is based
on temporal gradients. Since occlusions usually co-occur with
flow discontinuities, measuring gradient of the flow vectors
is potentially a useful measure:

fTG,x (x, z) = ‖∇ūx‖ , fTG,y (x, z) = ‖∇ūy‖, (1)

where fTG (x, z) gives the feature value at pixel x at scale-
space level z.

All other features that are in our final classifier are based
on flow. Cross-checking how a pixel value changes from I1 to
I2 when advected by flow u can reveal occlusions wherever
brightness constancy breaks down:

fPC (x, z) = |I1 (x, z)− bicubic (I2 (x + u(x, z), z))| . (2)

By computing flow in both directions, we are able to use
two additional sets of features. Given perfect bidirectional
flow fields, the path taken by a pixel advected from I1 to
I2 using u(x) and back using u′(x′) should return the pixel
to its original location. This is not true for occluded pixels,
as they flow to undefined locations. We find this disparity in
forward and reverse flow by taking the `2 distance between
the original location and its position after following the
pixel’s flow x′ = round (x + u(x, z)),

fRC (x, z) = ‖x− (x′ + u′(x′, z)) ‖. (3)

Following the same argument, the reverse flow direction at
non-occluded pixels should be nearly opposite of the forward
flow direction, except in cases of errant flow in regions of

Fig. 2. Shows an overview of our approach - demonstrates how the occlusion posterior probability is computed and fed to the oversegmentation framework.

occlusion. We compute this reverse flow angle consistency
as

fRA (x, z) = |π − arccos [u(x, z) · u′(x′, z)] |. (4)

Apart from these 4 set of features discussed above, we
also experimented with other feature combinations. We give
maximum F1-scores in Table I for leave-one-out cases from
our occlusion classifier’s training set. The F1-score is a mea-
sure indicative of combined precision and recall performance
(computed as 2PR/(P +R)). We find our classifier built on
just these 4 features gives a good trade-off between accuracy
and computation time.

B. Occlusion-aware Oversegmentation

During the oversegmentation stage, Grundmann et al. [2]
uses the `2 color distance to create edge weights between
pixels both spatially and temporally. These edge weights are
given as:

w(eij) = ((li − lj)2 + (ai − aj)2 + (bi − bj)2)/3 , (5)

where each term represents the difference between two pixels
i and j for each of the channels in the l∗a∗b∗ colorspace.
Some of these edge weights that lie across object boundaries
are incorrectly assigned a low score due to the objects being
of similar color. At these edges, the graph cut algorithm
of Felzenszwalb and Huttenlocher [1] will produce false
negatives causing the objects to be merged. Because this edge
does not appear in the oversegmentation stage, the error will
be propagated to every level of the hierarchical segmentation
and cannot be recovered. In order to ensure that this edge
is created, we use the per-pixel occlusion probabilities of
Humayun et al. [4] as a distance cue in the oversegmentation.
We create an edge weight for every pixel in the spatio-
temporal volume according to the equation:

w(eij) = α · |Ii − Ij | + (1− α) · |Oi −Oj | , (6)

where the first term represents the `2 color distance and the
second term represents the `2 occlusion probability distance.
Essentially, pairs of pixels with a large occlusion probability
difference will be assigned a larger weight and will not
be combined while we segment the graph. The opposite is
true for pairs of pixels with a small occlusion probability
diference; they are assigned a smaller weight and should

be combined together. This formulation is a result of the
intuition that if occlusions are found between two seperate
regions, they must belong to different objects and should not
be merged. This information then gets propagated in order to
preserve the edge in the hierarchy.

IV. EVALUATION

The feature selection process involves determining the
features that yield the most accurate occlusion classification
of the pixels. We evaluate this data with Maya-generated
sequences that have corresponding ground truth occlusion
masks in Table I. By quantitatively evaluating the F1 scores
from precision-recall curves for each combination of features
across all test sequences, we can determine the most accurate
combination of features.

The performance of the occlusion-based oversegmentation
is compared to the original oversegmentation and to the
oversegmentation with depth cues from an RGBD sensor.
When using depth in the oversegmentation stage, the edge
weight between pixels i and j is computed as

w(eij) = α · |Ii − Ij | + (1− α) · |Di −Dj | , (7)

where I and D are the RGB and the Depth image. We set α =
0.5 for our experiments. It is important to note that if either
of the pixels has an unknown depth, we instead use only the
`2 color distance. This function causes the oversegmentation
to force edges between objects at different depths.

Fig. 3. Level of hierarchies that merge occurs for interesting objects across
different sequences.

Crates1 Crates2 Robot Sponza1 Sponza2 Crates1txtr Brickbox1t1 Brickbox2of Mayan1 Text1
PC+RC 0.107 0.016 0.278 0.477 0.059 0.418 0.571 0.411 0.461 0.358
PC+RC+RA 0.146 0.015 0.266 0.432 0.063 0.474 0.605 0.416 0.477 0.238
PC+TG+RC+RA 0.148 0.023 0.296 0.532 0.120 0.608 0.615 0.488 0.447 0.399
PC+TG+AV+LV+CS+RC+RA 0.180 0.020 0.342 0.525 0.136 0.620 0.603 0.507 0.448 0.469
All Features 0.189 0.022 0.314 0.537 0.150 0.597 0.633 0.494 0.400 0.624
All Features + 4 flows 0.149 0.034 0.457 0.640 0.207 0.807 0.868 0.741 0.584 0.754

TABLE I. Leave-one-out F1 scores. Computed by getting the maximum F1 score over the precision-recall graph. The highlighted row is the classifier we
eventually selected, whereas bold values indicates the best performing classifier for a given training image pair.

RGB Occlusion Posterior RGB Oversegmentation Occlusion Oversegmentation

R
ad

sD
es

k

(a) (b) (c) (d)

C
up

bo
ar

d

(e) (f) (g) (h)

Fig. 4. Qualitative oversegmentation results for the RadsDesk and Cupboard sequence.

The algorithm is tested using real sequences where false
negatives arise during the oversegmentation stage. We quan-
titatively compare the number of false negatives using each
of the three schemes in Figure 3.

V. DISCUSSION

In order to evaluate which features should be selected from
the random forest, we created Table I. This table shows that
the combination of photo-constancy, reverse flow constancy,
temporal gradient, and reverse flow angle consistency per-
form the best at detecting occlusions. We experimented with
other features suggested by Humayun et al. [4], but noticed
that getting more accurate results required computationally
expensive features.

The results of the algorithm are shown in Figure 4. A
qualitative analysis can be performed by observing locations
where two different objects merge during the original over-
segmentation, but do not merge in the monocular occlusion
based approach. In the RadsDesk sequence a false negative
is made in the original oversegmentation that causes the hand
to merge with a region that belongs to a different object. The
Cupboard sequence clearly shows that our method reduces
the number of segments produced by our algorithm. Although
our approach at times helps separate different objects, the
process is detrimental whenever there are no occlusion cues
between two objects (for instance the chair’s arm in Rads-
Desk). Overall, occlusions inferred from an RGB sensor can
help dilineate object boundaries to some extent.

We also show that our resulting monocular oversegmenta-
tion implementation can often achieve better results in Figure

3. The bars represent the number of hierarchical stages that
a true positive edge survives. A possible explanation for
the monocular occlusion oversegmentation outperforming the
RGBD oversegmentation is that the depth map is often noisy
and contains incomplete areas.

This work demonstrates that monocular vision can provide
similar cues to that of a depth sensor when it comes to video
segmentation. Future work will involve using occlusion infor-
mation into the hierarchical segmentation step by assigning
each spatio-temporal superpixel scores based on the amount
of occlusion within the region.

REFERENCES

[1] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based image
segmentation. IJCV, 59:167–181, 2004.

[2] M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hierarchical
graph-based video segmentation. In IEEE CVPR, pages 2141 –2148,
2010.

[3] X. He and A. Yuille. Occlusion boundary detection using pseudo-depth.
In ECCV, volume 6314 of LNCS, pages 539–552. 2010.

[4] A. Humayun, O. Mac Aodha, and G. J. Brostow. Learning to find
occlusion regions. In IEEE CVPR, pages 2161 –2168, 2011.

[5] V. Kolmogorov and R. Zabih. Computing visual correspondence with
occlusions using graph cuts. In IEEE ICCV, pages 508 –515 vol.2,
2001.

[6] J. Lezama, K. Alahari, J. Sivic, and I. Laptev. Track to the future:
Spatio-temporal video segmentation with long-range motion cues. In
IEEE CVPR, pages 3369 –3376, 2011.

[7] A. Stein and M. Hebert. Occlusion boundaries from motion: Low-level
detection andmid-level reasoning. IJCV, 82:325–357, 2009.

[8] A. Vazquez-Reina, S. Avidan, H. Pfister, and E. Miller. Multiple
hypothesis video segmentation from superpixel flows. In ECCV, volume
6315 of LNCS, pages 268–281. 2010.

[9] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and
H. Bischof. Anisotropic Huber-L1 optical flow. In BMVC, 2009.

