
1

1 Kinect Depth Inpainting and Filtering

I. PROBLEM

Figure 1. A typical depth map retreived from the Kinect sensor.

The Kinect sensor is a technology that recently made its
way into the field of computer vision. In many ways the
sensor is revolutionary, because it provides unprecedented
ease of access to depth data. In practice, however, the data
collected from the sensor is unusable for many computer
vision applications. The Kinect RGB camera, IR camera, and
IR projector are positioned on different parts of the device, so
when one aligns the depth information with the point of view
of the camera, the result is an image similar to the one above.
The black regions are either occluded from the point of view
of the IR camera, or absorb IR light and so contain no depth
information. Furthermore, surfaces on object boundaries are
often perpendicular to the IR camera which results in noise
when trying to observe the projected light. The result is that
object boundaries are very unstable, and the alignment of depth
and color edges is poor. In our project we will implement
a package that will make use of the underlying color and
temporal information to inpaint holes and stabilize edges, thus
preparing the depth information for further applications in
computer vision. We believe this is an important and useful
step due to the important role object boundaries and edges
play in many computer vision applications.

II. RELATED WORK

Our project is concerned with inpainting and noise filtering.
We base our inpainting approach on a paper by Alexandru

Telea [1]. This is a commonly used algorithm because it is
simple to implement, fast, and produces results of comparable
quality to much more complicated and time demanding al-
gorithms. Like most existing inpainting algorithms, the Telea
method is designed to fill cracks and removed objects in color
images, and does so by propogating the grey levels, intensity

gradients, and details like lines from a narrow band of known
pixels around the hole into the center. Because the algorithm
is designed for generic hole-filling in colored images, it does
poorly when applied to our problem out of the box. A result
typical of any naive application of an inpainting algorithm to
our raw image from Figure 1 is shown at the top of Figure
3. As can be seen, the inpainting extended object boundaries
and created some arbitrary shapes that simply do not exist in
reality, thus making the image even less useful than in the raw
case.

Similar to inpainting, generic filtering approaches fail to
take advantage of all of the information available in our
specific problem: depth, color, and time. We consider two
filtration approaches. The first is based on Joint Bilateral Up-
sampling by Kopf et. al. [2]. This algorithm takes advantage of
the color in a high resolution image to improve the upsampling
of a low resolution labeling. Labels from the neighborhood of
a pixel that are close in color space have more influence on
its label. We apply a similar methodology to take advantage
of the available time and color information when filtering
the depth image. The second approach is based on median
filtering, which is well established in the vision community
as an edge-preserving filter. A naive application of this filter
is shown in Figure 4. Again, we note that we can make the
filter much more effective by taking advantage of the available
color information.

III. APPROACH

Our approach centers on leveraging knowlege about hole
and noise formation, as well as additional sources of informa-
tion like color and time to create better performing algorithms.

A. Fast Marching Method
A popular inpainting algorithm is the Fast Marching Method

(FMM) by Alexander Telea [1].
This algorithm initializes a mask over the image, where

pixels that are known are labeled with 0, and pixels that are
unknown are labeled with ∞. It then finds a narrow band
of pixels between the known and unknown regions, placing
these pixels into a heap, which is organized according to the
function H(p) = d(p), where H is the heaping function and
d is the distance of this pixel to the edge of the hole. At each
iteration, the algorithm picks the minimum unknown pixel
off of the heap, inpaints it with a first-order approximation
of the local gradient (for details consult [1]), and updates its
neighbors, possibly placing them into the heap. The resulting
H(p) function is illustrated in Figure 2.

This algorithm does something that we do not desire -
namely, it gives the same priority to “marching” far-away
pixels as it does to foreground object pixels. To fix this, we
modify the heaping function: H

�(p) = αd(p)− (1−α)z(pn).

2

Figure 2. Visualization of our modification of FMM. The grey values inside
the hole are representative of the values of H(p), which dictates the order
in which the pixels will be filled (darker pixels get picked first). The original
approach (left) evenly fills the hole from all directions. Our approach(right)
modifies the ordering by giving the pixels closer to a deeper edge (-Z) more
priority, thus marching the background across the hole.

Here, d(p) is the distance to the edge of the hole, as before.
The other term, z(pn) is the (possibly inpainted) depth of a
neighbor pixel. Finally, α is a constant in the interval [0, 1]
that is a user-specified parameter for how much we value
these two relative terms. The result of this modification is that
pixels which are further into the image (have larger depth)
will have smaller heap values, and so will be given priority
when choosing the next pixel to inpaint. This is illustrated in
the right hand side of Figure 2.

B. Joint Bilateral Filter

While the above algorithm addresses the issue of filling
holes in Kinect depth images, we still have the problem of
noise around object boundaries. In order to address this, we
consider the Joint Bilateral Upsampling filter by Kopf et. al.
[2].

A bilateral filter is a combination of a domain kernel, which
gives priority to pixels that are close to the target pixel in the
image plane, with a range kernel, which gives priority to the
pixels which have similar labels as the target pixel. This filter
is often useful when one wants to preserve edge information
because of the range kernel advantages. The Kopf approach
modified the domain kernel by also considering color distances
in the domain filter, thus weighing similar-looking pixels more
when computing a new label.

Our approach leverages not only color information, but
also time information. This is perhaps best explained with an
equation:

z
�(p) = Σq∈N (z(q) × wz(|z(p) − z(q)|, σz) ×

wd(d(p, q), σd)× wc(c(p, q), σc))
Here, N is a time and space neighborhood around the

pixel in the video volume of the image. z(p) is the depth(or
label) of the pixel. d(p, q) is the distance between p and q

in space and time. The functions wz, wd, wc are zero-mean
gaussians with standard deviations σz, σd, σc, which are user-
specified parameters for how much leeway the labeling has
in each of those dimensions. Thus, we take a weighted sum
of the spatiotemporal neighborhood of the pixel, allowing
pixels that are close in space, time, color, and depth to have
more influence on the given pixel. With such a weighing, we
expect pixels that are close to the edge that might have the
wrong depth label, to be more influenced by neighboring pixels

with similar appearance, thus restoring the correct label and
aligning depth boundaries with color boundaries.

C. Color-Assisted Median Filter
After implementing the bilinear filter, we found out that it

was simply too slow to use in any real-time applications. Cap-
turing enough information to correct edge mistakes requires
relatively large neighborhoods (at least 7 × 7). The result is
that many lookups, distance computations, and multiplications
have to be done for every pixel.

In light of this, we implemented a second filtering method
based on median filtering. The median filter assigns to each
pixel the depth given by the median of its neighborhood. In
naively applying this method, we found that it did smooth
out flicker and noise around edges, but did not do a good
job in correcting the object boundaries, as seen in Figure 4.
To improve performance, we first trimmed the neighborhood
by removing a fraction of the pixels that were furthest from
the current pixel in color space, and then took the median
over the remaining pixels. Similar to the Bilinear approach,
this leveraged the color information with the assumption that
pixels similar in color will have similar depths.

IV. EVALUATION

Since we do not have access to ground truth data, and
constructing a ground truth database would be prohibitively
time consuming, we evaluate our approach subjectively on a
video that we recorded ourselves. We give images of the first
frame of this video as reference for the reader.

The figure at the start of the paper is the raw depth image
given to us by the Kinect device, and is illustrative of the
problems we wish to solve. The dark black areas are the
regions that contain no depth information (holes). Also, a lot
of noise can be seen around object boundaries, like the top
right part of the head.

Figure 3 is a comparison of applying the naive Telea inpaint-
ing method, and our modification of that method (α = .5). It
is clear that our method outperforms the original, the best
illustration being the shoulder on the left side of the image
which was incorrectly extended by the naive method, but
preserved with our method.

Even in the inpainted image, however, we see some uneven
edges around object boundaries (which flicker in the video),
and note that the depth boundaries are in some cases incorrect
- like in the top right part of the head region, where a hole
appears in the person’s head. In Figure 4 we demonstrate
the results of applying different filtering approaches to the
depth image. A naive bilinear filter did not have any effect,
so we omit it for the sake of space. This is because it relies
on the erroneous depth labels, and no additional sources of
information, and so cannot recover from the failures of the
inpainting method.

Our modification of the bilinear filter can be seen to
improve the inpainted image. We see a really crisp edge on
the shoulder on the right side of the image, some repair to
the hole in the head, and a step towards the cleanup of the
outline of the person. Repetitive applications of the filter do

3

Figure 3. Naive Telea inpainting method (top) compared to our method
(bottom).

completely resolve these issues, but cannot be shown due to
space constraints.

In the same figure, we also note that our modification to
the median filter does a much better job at aquiring correct
edges than the naive median filter. Many parts of the outline
are smoother and cleaned up, and the hole in the head, again,
begins to disappear.

V. DISCUSSION

In our project, we attempted to leverage additional sources
of information, and knowlege about the sources of error, to
inpaint and filter Kinect depth maps. As can be seen by Figures
3 and 4, our methods for filling in holes and improving object
boundaries are far more successful than existing algorithms.
The inpainting algorithm correctly marches the background
across holes, but does not necessarily end up with correct ob-
ject boundaries. Our filtering method help improve inpainting
by using color information to better establish edges.

Still, our algorithms do not produce a perfect result, and
have some limitations of their own. In the current state, our
Bilateral filtering method works far too slowly to be applicable
in real time. The median filter addresses this problem, but
produces less optimal results in the process.

In general, large filters have to be applied for several
iterations to produce high-quality depth maps. The reason for
this is that the inpainting method does not take advantage of
color information, and compunds the error in object boundary

Figure 4. Comparison of different filtering method. From the top: our bilateral
filter, naive median filter, our median filter.

alignment. Then, much more computation time has to be used
on filtering to repair these errors. A further step in this project
would be to incorporate color in the FMM inpaint method, so
we produce color edge-aligned inpainted images right away.
Then, much cheaper filtering methods can be used to get the
same quality of results.

VI. REFERENCES

1) Telea A. An Image Inpainting Technique Based on
the Fast Marching Method. Journal of Graphics Tools.
2003;9(1):25-36.

2) Kopf J, Cohen MF, Lischinski D, Uyttendaele M. Joint
Bilateral Upsampling. Acm Transactions On Graphics.
2006.

