5 - Kinect Depth Based Video Segmentation

Fig. 1.
at different depths. (b) gives the Kinect depth map. (¢) shows segmentation
problems in [3] due to lack of depth cues (the yellow objs. were combined).

(a) shows an image of two objects with similar appearance but

I. INTRODUCTION

Dense video segmentation concerns many vision re-
searchers since it provides a useful low-level cue for many
problems. Traditionally, methods simply observe colors when
combining voxels to make space-time regions. In video, opti-
cal flow can also play a role in discriminating regions. While
the combination of these descriptors can achieve reasonably
accurate segmentations, algorithms fail when multiple objects
are of similar color undergoing the same motion. With the
decreasing cost of consumer stereo cameras, it has become
increasingly popular to have RGBD video, which synchro-
nizes both RGB and depth information in every frame.
We will develop a video segmentation algorithm that uses
RGBD readings from a Microsoft XBOX Kinect. This will
enable our algorithm to distinguish between two regions that
have similar appearance and motion but lie across a depth
discontinuity.

In this paper we compare the efficacy of different descrip-
tors employing depth information with appearance and flow.
For each descriptor, we evaluate different distance metrics
to find which complement motion and intensity measures.
We quantitatively compare the segmentations produced with
these metrics on ground-truth labellings for depth varying
objects. We also qualitatively analyze our results against
segmentations done with no depth information. Overall we
demonstrate the value of explicit depth information in video
segmentation frameworks, where motion and appearance cues
fail. Having shown the advantages of depth cues, we also
discuss possibilities for achieving similar performance in the
absence of a depth sensor.

II. RELATED WORK

Most methods for dense video segmentation are based on
photometric consistency [9], [!]. Apart from using color,
Grundmann et al. [3] uses optical flow explicity to provide a
hierarchy of spacetime superpixels. For capturing non-local
image characteristics in a computationally efficient way, their
initial segmentation is based on the graph-based approach
of [2]. In our algorithm, we will augment [3] with depth
information from the Kinect.

Other proposed techniques demonstrate the importance of
occlusions in creating space-time superpixels [5], [8]. We
combine the framework from [3] with the occlusion reasoning
of Humayun er al. [4] in an attempt to understand how
monocular occlusion cues in RGB videos can be used to
replace the extra depth sensor.

III. METHODOLOGY

We incorporate depth information by extending the frame-
work of Grundmann et al. [3]. This algorithm runs in two
stages. In the first step it oversegments the space-time volume
using Felzenszwalb et al. [2], where temporal edges are
directed by optical flow. In the second step, supervoxels
created in the first step are combined by observing the x?
distance between color and flow histograms. By adjusting
the 7 merging threshold [2] and the minimum allowed region
size, they create a hierarchy of segmentations. Each stage in
the hierarchy aims to merge regions from the stage preceding
it. This algorithm works well when appearance and flow cues
are enough for following region boundaries, but breaks down
when two nearby objects move similarly or appear the same.
In such situations the human visual system (HVS) heavily
relies on stereo depth to separate out segments in the scene.
Taking inspiration from the HVS, we augment the video
segmentation framework by incorporating depth information
from a Kinect sensor. We make use of its inbuilt RGB camera
to avoid any need for calibration.

Depth is used in both the oversegmentation and the hierar-
chical stage of the algorithm. For the oversegmentation stage,
the edge weight between pixels ¢ and j are computed as

w(ej) =a-|I; = Lj| + (1—a)-|D;=Dy| , (1)

where I and D are the RGB and the Depth image. We set
o = 0.5 for our experiments. Note that this edge function
is only used for spatial edges, since we expect depth for
objects to vary across time and using it as a temporal cue
might confuse the algorithm. For the hierarchical stage, we
change the edge weight between two regions k£ and [ to

w(ew) = (1= (1= (Ix, 1)) (1 = (Fy, F)) (1 = (D, D1)))”
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where (Ij,I;) is the image intensity distance metric. This
edge weight also caters for flow (denoted by (Fj, F;)) and
depth differences. The following sections explain the different
depth descriptors and associated distances for this region edge
weight.

A. Depth Descriptors

Before different regions can be compared based on depth,
we need an efficient way to describe these measurements.
Although it is theoretically possible to use raw depth per pixel
for comparing regions, this scheme is extremely expensive
when evaluating millions of pixels present in the video vol-
ume. This reason coupled with the need to deal with noise, we
compress the depth information into summarized descriptors.
Since these descriptors are used to make decisions when to
merge regions, they are updated whenever two regions merge.

1) Average Depth: Most objects which are merged due
to confusing flow and appearance lie at widely different
depths. In such cases it is usually sufficient to use the
average depth values of all pixels in a region for making
merge decisions. Note that average depth can be misleading
for surfaces which are not parallel to the focal plane. This
requires more revealing depth descriptors, one of which could
be histograms.



2) Histograms: In one set of experiments we discretize
depth to be stored in histogram. This representation allows
more flexibility as it can (1) represent depths of surfaces not
parallel to the focal plane; (2) deal with noisy measurements.

B. Depth Distance Metrics

We evaluated four different distance metrics for comparing
the depth descriptors given in the preceding section. These
metrics are applied to Equation 2 (as (Dy, D;)) to incorporate
depth cues with flow and appearance. Note that the global
distance metric given in Equation 2 sets (Dj,D;) = 1
whenever Kinect reports no depth values for either region
k or region (. This heuristic forces the algorithm to rely only
on flow and color information in such circumstances.

1) ¢-norm Distance: Given the average depth of voxels
of two regions, we can compute the ¢; depth distance be-
tween these two. This rather simplistic approach works well
wherever the depth disparity between neighboring regions is
large. When we merge two regions in this approach, the new
depth descriptor can simply be their average. We improve
this descriptor update by using a size weighted average
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where n; and n; are the number of voxels in the respective
regions. Dy, is the average depth of the new merged region.

2) x? Distance: This distance metric can be used to
compare normalized histograms by summing the chi-squared
error over all bins in the histogram:

1 (h(b) — (b))
<DkaDl>*§;m , “4)

where B is the number of bins and h(b) is the normalized
value of region k at bin b. This is known as a bin-to-bin
comparison.
3) EMD-¢ Distance: This distance metric can be used to
compare normalized histograms by:
Dy, Dp) = min i &)
< > G:{gi;j:u,j)em};g !
where G is a flow from Dy, to D; and g;,; denotes flow from

bin (¢) to (j). This is known as a cross-bin comparison as
presented in Ling et al. [0].

IV. EVALUATION

We test our algorithm using four different sequences, each
focused on the specific merge between two objects that are of
similar appearance, but are located at different depths. Our
results are subjected to a qualitative analysis that seeks to
compare the accuracy of the merges for different metrics at
different hierarchical levels. Figure 3 shows the results for
each test sequence and each metric. The left-most column

| RGB | No Depth | w.avepen | x? | EMD-f3

RadsShirt 26.72 26.69 26.84 26.81 26.99

StaticDrawers 10.63 10.10 10.12 10.14 10.19

SlidingDrawers | 44.92 44.65 44.76 44.83 45.35

TennisBalls 15.72 16.16 16.19 16.30 16.53
TABLE I

RUN-TIME FOR DIFFERENT SEQUENCES.
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Fig. 2. Shows how the oversegmentation changes with inclusion of depth.
The two yellow objects are broken to many supervoxels when using no
depth information, whereas when using Equation 1, the objects are clustered
correctly (blue and pink segments).

is the RGB for the specific frame being compared. Each of
the other columns represents the algorithm without depth,
the algorithm with size-weighted average depth, the chi-
squared histogram distance, and the earth mover’s distance
histogram distance, in that order. For testing purposes, each
histogram metric uses histograms of 100 bins. A quantitative
analysis was performed on the run-time and hierarchical step
of merging for each different metric. The values are given in
Table I for each sequence and metric.

V. DISCUSSION

During the oversegmentation stage, there is a distinct
difference when depth is present. Figure 2 shows the over-
segmentation for both cases. When depth is present, more
merges are made between regions that have similar depth and
color. This is most noticable in the yellow drawers, the door,
and the wall. As evidenced in Figure 3, depth as a feature
descriptor in the hierarchical stage can also provide more
accurate segmentation of objects that are similar in color
and/or optical flow.

The most important thing to note about the run-time values
in Table I is that the difference in run-time between each of
the four distance metrics is negligable for short clips. This
occurs because the majority of the computational cost exists
in the pre-processing and oversegmentation stages. Another
important thing to note is that when depth is used in the
algorithm, the run-time can actually decrease. This may seem
counter-intuitive but can occur because the presence of depth
influences more regions to merge in the oversegmentation
step as shown in Figure 2. If fewer regions are fed to the
hierarchical step, less merging needs to take place, decreasing
the computational cost.

Table II represents how each algorithm performs in the
hierarchical step for each sequence. In every sequence there
are two object that have very similar appearance (purple
shirts, yellow drawers, and green tennis balls). The hierar-
chical step at which the two objects merge is given in the
table. An "N/M’ in the table represents when the two objects
never merge at any level. As shown, the chi-square histogram
distance out performs all approaches.

The difference between the chi-squared histogram distance
and the earth mover’s distance histogram distance metrics
is clearly displayed in Figure 3. Because chi-squared only
compares bins at each index of the histograms directly, it
functions well for objects that occupy only a few depth bins,
like planar surfaces that are perpendicular to the camera.
The earth mover’s distance out-performs the chi-squared
algorithm when objects occupy multiple depth bins. An
example of this is the floor in Figure 3 row 2 where it merges
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| No Depth | w.awpepn | x2 | EMD-£1

RadsShirt 5 9 11 9

StaticDrawers 2 4 N/M 4

SlidingDrawers 3 3 13 3

TennisBalls 15 N/M N/M 8
TABLE II

HIERARCHY LEVEL AT WHICH SIMILAR OBJECT MERGE OCCURS.

much more quickly together. The chi-squared algorithm fails
here because the regions have non-overlapping populated
histogram bins.

This work has confirmed the idea that depth from a
Kinect sensor can be used as a feature descriptor to increase
the accuracy of segmentation. The results reveal the fact
that in terms of computational cost, the different distance
metrics are very similar. The size-weighted average, chi-
squared histogram distance, and the normalized earth mover’s
distance histogram distance are the most accurate and each
should be used according to the nature of the scene that is
to be segmented. Future work will use [7] for performing
relative depth reasoning on monocular sequences. This will
be performed by using occlusion cues in conjunction with
region shape moments to determine ordinality of the regions
in the oversegmentation, then using the ordinality as a feature
descriptor in a second pass of the algorithm. The accuracy
of this segmentation will compared the results of this paper
in order to see how much depth information we can obtain
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Qualitative results. Each row shows segmentation results for a particular frame in a sequence.

from a monocular sequence.
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